Copied to
clipboard

?

G = A4×C24order 192 = 26·3

Direct product of C24 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C24, C261C3, C253C6, C249(C2×C6), C22⋊(C23×C6), C233(C22×C6), SmallGroup(192,1539)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C24
C1C22A4C2×A4C22×A4C23×A4 — A4×C24
C22 — A4×C24

Subgroups: 3160 in 1165 conjugacy classes, 201 normal (6 characteristic)
C1, C2 [×15], C2 [×16], C3, C22, C22 [×35], C22 [×205], C6 [×15], C23 [×30], C23 [×455], A4, C2×C6 [×35], C24, C24 [×35], C24 [×205], C2×A4 [×15], C22×C6 [×15], C25 [×15], C25 [×16], C22×A4 [×35], C23×C6, C26, C23×A4 [×15], A4×C24

Quotients:
C1, C2 [×15], C3, C22 [×35], C6 [×15], C23 [×15], A4, C2×C6 [×35], C24, C2×A4 [×15], C22×C6 [×15], C22×A4 [×35], C23×C6, C23×A4 [×15], A4×C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Smallest permutation representation
On 48 points
Generators in S48
(1 8)(2 9)(3 7)(4 18)(5 16)(6 17)(10 44)(11 45)(12 43)(13 47)(14 48)(15 46)(19 36)(20 34)(21 35)(22 32)(23 33)(24 31)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)
(1 20)(2 21)(3 19)(4 32)(5 33)(6 31)(7 36)(8 34)(9 35)(10 30)(11 28)(12 29)(13 25)(14 26)(15 27)(16 23)(17 24)(18 22)(37 45)(38 43)(39 44)(40 47)(41 48)(42 46)
(1 4)(2 5)(3 6)(7 17)(8 18)(9 16)(10 46)(11 47)(12 48)(13 45)(14 43)(15 44)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)
(1 27)(2 25)(3 26)(4 39)(5 37)(6 38)(7 41)(8 42)(9 40)(10 22)(11 23)(12 24)(13 21)(14 19)(15 20)(16 28)(17 29)(18 30)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 15)(2 16)(3 12)(4 44)(5 9)(6 48)(7 43)(8 46)(10 18)(11 13)(14 17)(19 29)(20 27)(21 23)(22 30)(24 26)(25 28)(31 41)(32 39)(33 35)(34 42)(36 38)(37 40)(45 47)
(1 10)(2 13)(3 17)(4 46)(5 45)(6 7)(8 44)(9 47)(11 16)(12 14)(15 18)(19 24)(20 30)(21 25)(22 27)(23 28)(26 29)(31 36)(32 42)(33 37)(34 39)(35 40)(38 41)(43 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)

G:=sub<Sym(48)| (1,8)(2,9)(3,7)(4,18)(5,16)(6,17)(10,44)(11,45)(12,43)(13,47)(14,48)(15,46)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39), (1,20)(2,21)(3,19)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(10,30)(11,28)(12,29)(13,25)(14,26)(15,27)(16,23)(17,24)(18,22)(37,45)(38,43)(39,44)(40,47)(41,48)(42,46), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,46)(11,47)(12,48)(13,45)(14,43)(15,44)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (1,27)(2,25)(3,26)(4,39)(5,37)(6,38)(7,41)(8,42)(9,40)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20)(16,28)(17,29)(18,30)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,15)(2,16)(3,12)(4,44)(5,9)(6,48)(7,43)(8,46)(10,18)(11,13)(14,17)(19,29)(20,27)(21,23)(22,30)(24,26)(25,28)(31,41)(32,39)(33,35)(34,42)(36,38)(37,40)(45,47), (1,10)(2,13)(3,17)(4,46)(5,45)(6,7)(8,44)(9,47)(11,16)(12,14)(15,18)(19,24)(20,30)(21,25)(22,27)(23,28)(26,29)(31,36)(32,42)(33,37)(34,39)(35,40)(38,41)(43,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)>;

G:=Group( (1,8)(2,9)(3,7)(4,18)(5,16)(6,17)(10,44)(11,45)(12,43)(13,47)(14,48)(15,46)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39), (1,20)(2,21)(3,19)(4,32)(5,33)(6,31)(7,36)(8,34)(9,35)(10,30)(11,28)(12,29)(13,25)(14,26)(15,27)(16,23)(17,24)(18,22)(37,45)(38,43)(39,44)(40,47)(41,48)(42,46), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,46)(11,47)(12,48)(13,45)(14,43)(15,44)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42), (1,27)(2,25)(3,26)(4,39)(5,37)(6,38)(7,41)(8,42)(9,40)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20)(16,28)(17,29)(18,30)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,15)(2,16)(3,12)(4,44)(5,9)(6,48)(7,43)(8,46)(10,18)(11,13)(14,17)(19,29)(20,27)(21,23)(22,30)(24,26)(25,28)(31,41)(32,39)(33,35)(34,42)(36,38)(37,40)(45,47), (1,10)(2,13)(3,17)(4,46)(5,45)(6,7)(8,44)(9,47)(11,16)(12,14)(15,18)(19,24)(20,30)(21,25)(22,27)(23,28)(26,29)(31,36)(32,42)(33,37)(34,39)(35,40)(38,41)(43,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48) );

G=PermutationGroup([(1,8),(2,9),(3,7),(4,18),(5,16),(6,17),(10,44),(11,45),(12,43),(13,47),(14,48),(15,46),(19,36),(20,34),(21,35),(22,32),(23,33),(24,31),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39)], [(1,20),(2,21),(3,19),(4,32),(5,33),(6,31),(7,36),(8,34),(9,35),(10,30),(11,28),(12,29),(13,25),(14,26),(15,27),(16,23),(17,24),(18,22),(37,45),(38,43),(39,44),(40,47),(41,48),(42,46)], [(1,4),(2,5),(3,6),(7,17),(8,18),(9,16),(10,46),(11,47),(12,48),(13,45),(14,43),(15,44),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42)], [(1,27),(2,25),(3,26),(4,39),(5,37),(6,38),(7,41),(8,42),(9,40),(10,22),(11,23),(12,24),(13,21),(14,19),(15,20),(16,28),(17,29),(18,30),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,15),(2,16),(3,12),(4,44),(5,9),(6,48),(7,43),(8,46),(10,18),(11,13),(14,17),(19,29),(20,27),(21,23),(22,30),(24,26),(25,28),(31,41),(32,39),(33,35),(34,42),(36,38),(37,40),(45,47)], [(1,10),(2,13),(3,17),(4,46),(5,45),(6,7),(8,44),(9,47),(11,16),(12,14),(15,18),(19,24),(20,30),(21,25),(22,27),(23,28),(26,29),(31,36),(32,42),(33,37),(34,39),(35,40),(38,41),(43,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48)])

Matrix representation G ⊆ GL6(ℤ)

100000
0-10000
00-1000
000100
000010
000001
,
100000
0-10000
001000
000100
000010
000001
,
100000
010000
001000
000-100
0000-10
00000-1
,
-100000
010000
00-1000
000-100
0000-10
00000-1
,
100000
010000
001000
000-100
000010
00000-1
,
100000
010000
001000
000100
0000-10
00000-1
,
100000
010000
001000
000010
000001
000100

G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

64 conjugacy classes

class 1 2A···2O2P···2AE3A3B6A···6AD
order12···22···2336···6
size11···13···3444···4

64 irreducible representations

dim111133
type++++
imageC1C2C3C6A4C2×A4
kernelA4×C24C23×A4C26C25C24C23
# reps115230115

In GAP, Magma, Sage, TeX

A_4\times C_2^4
% in TeX

G:=Group("A4xC2^4");
// GroupNames label

G:=SmallGroup(192,1539);
// by ID

G=gap.SmallGroup(192,1539);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,285,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
×
𝔽